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Revenue forecasting accuracy is critical to governmental operations. This paper 
addresses the question: What is the best technique for forecasting sales tax 
revenue? Prior studies in this area have focused on the differences between 
machine learning techniques and traditional approaches and neglected to consider 
how differences in pre-processing steps for the data before the forecasting model 
is applied are important. Here, we show that machine learning techniques do not 
always provide increased forecasting accuracy. Instead, the modeling choices 
matter, but less than the prior literature and practice suggested. Rather, pre-
processing makes the most significant difference in forecasting accuracy, and 
forecasters need to understand the unique characteristics of time series data to 
improve forecasting performance. The immediate implications of these findings 
are that the focus of practitioners of in sales tax revenue forecasting should shift 
from prioritizing model choice towards data pre-processing. 
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What is the best technique to forecast revenue? State and local governments have grappled with 
this question for decades (Grizzle & Klay, 1994; Rodgers & Joyce, 1996; Rubin, Mantell, & 
Pagano, 1999). Differences in forecasting practices exist across countries (Buettner & Kauder, 
2010), and overall forecasting accuracy can depend on political and organizational influences 
(Bretschneider & Gorr, 1992; Bretschneider et al., 1989). 

The prior literature has also attempted to identify the accuracy of various methods (Boyd 
& Dadayan, 2014; Grizzle & Klay, 1994), such as regression (Wong, 1995) and time series 
models (Frank, 1990). Mikesell (2011) even advocated that “having the experience of ‘old 
hands,’ who have seen almost everything play out at least once before, can be crucial to getting 
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those impacts correctly in the forecast” (p. 569), highlighting the importance of the human 
component and individual forecaster knowledge in the process. Yet, the accuracy of different 
methodological approaches depends on the unit of analysis, with damped trend analysis and 
exponential smoothing performing the best when forecasting monthly and quarterly data and 
naive approaches when forecasting switched to annual data (Williams & Kavanagh, 2016). 

Recently, researchers have explored the accuracy of machine learning techniques as new 
revenue forecasting tools for state and local governments. Buxton et al. (2019) found that the two 
deep learning approaches, simple Multi-Layer Perception and global Multi-Layer Perception 
models, outperform the traditional moving average approach to forecasting for sales tax data 
within Illinois. Their study also broke out sales tax revenue by type, dividing the information 
into ten different categories of sales tax revenue within the state. In contrast, Chung, Williams, 
and Do (2022) focus on multiple types of local government revenue sources and the accuracy of 
machine learning forecasting techniques when compared to methods traditionally used by 
forecasters at the local level. They found that a machine learning method, k-nearest neighbor, 
performed the best at forecasting property taxes. In contrast, they found that a traditional 
forecasting approach dampened trend exponential smoothing, providing the best accuracy for 
forecasting sales taxes. In summation, the ability of the machine and deep learning methods to 
forecast with greater accuracy than traditional forecasting techniques remains inconclusive. 

This paper addresses the question: What is the best technique for forecasting sales tax 
revenue? Like Buxton et al. (2019) and Chung et al. (2022), we focus on the differences in 
performance accuracy between traditional, non-machine learning techniques and machine 
learning techniques. However, methods are only as good as the quality of data used to analyze 
them (Cole, 1969). In this vein, we include an exploration of pre-processing steps–tasks taken to 
improve the quality of data prior to any analysis–across different forecasting time periods using 
monthly, quarterly, and annual sales tax data. Understanding that the ideal number and type of 
pre-processing steps might vary across forecasting time periods, we look at each time period 
separately. Therefore, the research question can be expanded to two questions. First, what is the 
best technique for forecasting sales tax revenue in both the number and type of pre-processing 
steps to the data and the forecasting method? Second, how do those findings change when the 
data are forecasted monthly versus quarterly versus annually? 

The modeling and pre-processing techniques are defined in Table 1. The modeling (i.e., 
forecasting) techniques selected include three classical methods, three machine learning 
methods, and four benchmark methods to help us understand the importance of more 
sophisticated classical and machine learning style forecasting methods. These are listed in order 
in the table. The three classical or traditional methods are autoregressive integrated moving 
average (ARIMA), dampened trend exponential smoothing (DT ETS), and linear trend model. 
These methods were selected to provide approaches from both the time-series analysis or causal-
like approaches found within traditional forecasting and have been common forecasting 
techniques for decades. The three machine learning approaches are K-nearest neighbor (KKNN), 
neural network autoregressive (NNAR), and extreme gradient boosting (XGBOOST). The three 
machine learning approaches use different algorithms through a training process to find 
underlying patterns and relationships in the data. Finally, the four benchmarking methods are 
used to create a series of baseline forecasts and include drift, naïve, seasonal naïve, and average 
methods.  

The pre-processing actions included in this study are either general data pre-processing 
steps or those specifically required for time series data. General pre-processing steps include  
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Table 1. Model and Preprocessing Description 
Type Abbreviation Long Name Description 

Preprocessing 
General IHS Inverse Hyperbolic 

Sine 
Natural logarithm of a case plus the square root of a case-
squared plus one. 

General Log Natural Log Natural logarithmic transformation of time series data. 
Time Series SA Seasonally Adjusted Average seasonal detrended time series obtained using 

multiplicative classical decomposition. 
Time Series Detrend Detrend Time series with the trend removed using multiplicative 

classical decomposition. 
Model 
Traditional ARIMA Autoregressive 

Integrated Moving 
Average 

Forecast using an automated process to determine the need 
and values for time series data differencing, autoregression, 
and moving averages. 

Traditional DT ETS Dampened Trend 
Exponential 
Smoothing 

Forecast using weighted averages of historical time series 
that are exponentially decayed and account for seasonality 
and trends using a "dampening" method to correct for over-
forecasting. 

Traditional Linear Trend Linear Trend Model Forecast using a trend calculated from historical time series 
data using linear regression. 

Machine 
Learning 

KKNN K-Nearest Neighbor Forecast using the "k" most similar case from historical 
time series data and aggregates them. 

Machine 
Learning 

NNAR Neural Network 
Autoregression 

Forecast using a trend calculated from historical time series 
data using linear regression. 

Machine 
Learning 

XGBOOST Extreme Gradient 
Boosting 

Forecast using an ensemble of gradient-boosted, regression 
tree algorithms. 

Benchmark Drift Drift Method 
Benchmark 

Forecast using the average change of the historical time 
series data. 

Benchmark Naïve Naïve Method 
Benchmark 

Forecast using the value of the most recent time series 
observation. 

Benchmark SNaïve Seasonal Naïve 
Method Benchmark 

Forecast using the value of the most recent time series 
observation from the same seasonal period. 

Benchmark Mean Average Method 
Benchmark 

Forecast using the average value of historical time series 
data. 

 
 

adjusting for inflation to make purchasing power comparable at different time periods and the 
data-normalization procedures of natural logarithm and inverse hyperbolic sine (IHS) 
transformations. Data normalization involves the mathematical transformation of a variable to 
make the distribution of data points more closely resemble a normal distribution, the benefits of 
which are important for statistical reasons. Transforming the distribution to resemble a normal 
distribution should aid in forecasting accuracy and decrease the impact of outliers within the data 
set. 

The second set of pre-processing steps involves cleaning the data using time series-
specific steps. Time series data are data points measuring some phenomena (like sales tax 
revenue collection) at different past points in time and, as such, are used in forecasting methods. 
However, time series data require special care as trends (long-term movements in the data) and 
seasonality (repeating fluctuations in data at regular intervals) are often present and can 
undermine various methodological procedures. To highlight the importance of accounting for 
these time series-specific data concerns, we include the following time series-specific pre-
processing steps: classical multiplicative time series decomposition procedures to adjust 
seasonality in monthly and quarterly data in addition to detrending time series data.  
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Next, we provide a summary of the existing literature on revenue forecasting. Then, we 
go over the data sources for this manuscript and the pre-processing steps we are undertaking. 
Next, we present the findings of our forecasting exercise. Finally, we discuss conclusions about 
the best technique for sales tax forecasting, limitations, and future research areas.  
 
 
Background 
 
Revenue forecasting in public finance has traditionally fallen into one of two camps: time-series 
analysis or causal-like approaches (Williams & Calabrese, 2016). Henceforth, these approaches 
will be referenced as traditional revenue forecasting approaches. The underlying assumption 
within revenue forecasting is that either previous trends impact future revenues or that a 
deterministic model of a set of variables can predict revenues. In the case of time series 
approaches, researchers and practitioners exploit the autocorrelative nature of revenue and the 
assumption that earlier observed revenue value will help predict future revenues (Williams & 
Calabrese, 2016). The vast majority of municipalities use a time series approach (Reddick, 
2004). 

In contrast, causal methods depend on a series of independent variables to predict the 
dependent forecasted revenue (Mikesell, 2011). Two serious shortcomings of the causal 
approaches are omitted variable bias (i.e., leaving out important control variables) and a lack of 
idealized or standardized independent variables (i.e., data that is accessible to local 
governments). These shortcomings may be why only a small minority of municipalities use this 
approach (Reddick, 2004). 

Machine learning techniques have not been discussed extensively in the public finance 
literature. According to Chung et al. (2022), 16 articles and conference papers apply machine 
learning techniques to government revenue forecasts. Of those 16, five were focused on the state 
level in the United States, and they focused on three states: Indiana, Utah, and Virginia 
(Carmody & Wiipongwii, 2018; Hansen & Nelson, 1997, 2002; Muh & Jang, 2019; Voorhees, 
2006). One omission from the list provided by Chung et al. (2022) was Buxton et al. (2019), 
which focused on forecasting sales tax revenue in Illinois, broken into ten different retail 
categories. Findings of the superiority of machine learning or traditional models were not 
uniform throughout the various studies.  

Understanding the accuracy of machine learning techniques as the means of revenue 
forecasting has not been widely tested nor explored using a wide variety of different study 
locations. In addition, none of those articles spoke of machine learning techniques being applied 
actively in practice. Instead, they compared one or more machine learning techniques to 
traditional models, actual data, existing practices, or other machine learning techniques. A 
review of the six articles based at the state level found that there has been minimal discussion in 
those articles of the pre-processing techniques outside of the identification of what pre-
processing techniques, if any, were undertaken. In addition, there was no discussion of how 
variations in pre-processing techniques might change their findings. There is still a wide range of 
existing knowledge that could be gathered by understanding how both forecasting accuracy and 
various pre-processing techniques could improve municipal and state revenue forecasting.  

The limited literature on revenue forecasting in public finance is not uniform in its 
account of the superiority of either traditional or machine-learning revenue forecasting 
techniques. The literature lacks examples of machine learning being applied in practice. 
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Variation in pre-processing steps also suggests a need for more agreement regarding the best 
approach. 
 
Data Pre-processing 
 
The literature is mixed regarding the need for pre-processing within revenue forecasting, 
specifically in cases of machine learning methods. Research has shown that neural networks, 
when used for forecasting, can adapt to any type of data, thereby negating the need for pre-
processing (Gorr, 1994). Similar arguments are made about multivariate autoregressive 
conditional heteroskedasticity models (Nelson,1996). 

In contrast, scholars have argued that pre-processing is necessary, even in the case of 
machine learning methods, to produce optimal forecasts. Systematic methodology has been 
proposed to determine whether weights need to be removed during pre-processing (Cottrell et al., 
1995). In other cases, neural networks cannot fully capture seasonal or trend variations to reduce 
forecasting errors and increase efficiency (Zhang & Qi, 2005). Therefore, when using machine 
learning techniques that depend on neural networks, researchers should either detrend or engage 
in deseasonalization of their data. 

In addition to the question of the need for pre-processing, the research is also mixed on 
the number and order of necessary pre-processing steps, specifically as it relates to forecasting 
with time series data (Balkin & Ord, 2000; Miller & Williams, 2004; Zhang & Qi, 2005; Zhang, 
Cao, & Schniederjans, 2004). This variation is in part due to the fact that not all time series are 
the same; some have an aspect of seasonality, others may possess an exponential or linear trend, 
and others may fluctuate around some level or baseline value. Differences in forecasting 
accuracy in testing three different pre-processing approaches: no special pre-processing, time 
series differencing, and taking moving averages have been found (Ahmed et al., 2010). In 
addition, prior research has suggested performing multiple transformations on data, such as log 
transformation, deseasonalization, and scaling (Ahmed et al., 2010). 

One common pre-processing step in revenue forecasting and with time series data that 
involves currency is adjusting for inflation. Removal of inflation is seen as a key part of the 
decomposition of revenue and expenditure data (Ammons, 1991, 2001). Armstrong (2001) 
directly spoke to inflation adjustments within the comprehensive set of principles for forecasting. 
Further, it has been suggested that “local governments may further benefit by obtaining inflation 
forecasts from a reputable national firm” (Williams & Kavanagh, 2016, p. 493) and warned that 
“forecasting the tax revenue or the nominal tax base without adjusting for these factors could 
lead to significant error” (Williams, 2017, p. 357). 

Therefore, due to the need for more evident consensus in pre-processing approaches, 
researchers would be well served by potentially engaging in a variety of pre-processing steps and 
varying the order in which they apply them in the case of time series data. As not all time series 
are the same (Ahmed et al., 2010), what might be the ideal set of pre-processing steps for one 
revenue forecasting data set might be different for another data set. 
 
Accuracy 
 
Prior research has suggested that picking the correct measurement of error within forecasting can 
be challenging (Mathews & Diamantopoulos, 1994). In particular, no one measure provides an 
unambiguous measurement of forecasting performance. In addition, if one relies on multiple 
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measures of accuracy, comparisons among forecasting approaches become difficult (Mathews & 
Diamantopoulos, 1994). A variety of accuracy measures can be used to determine the accuracy 
of a forecast, including mean absolute percent error (MAPE), symmetric mean absolute 
percentage error (sMAPE), revised mean absolute percentage error (r-MAPE), mean squared 
error (MSE), and model fit.  

MAPE provides a percentage of absolute or positive percentage error between the value 
provided through the forecasting technique and the actual observed value or revenue dollars 
collected. At the same time, sMAPE adjusts the percentage error calculation to include the sum 
of the absolute actual observed value and the absolute forecasted value divided by two, which 
creates a lower and upper bound. r-MAPE divides the traditional MAPE calculation by the 
number of periods considered. MSE uses the average of the square of the difference between the 
actual and forecasted value. The model fit looks at statistical measures of the overall fit of the 
analysis, such as adjusted R-square in the case of linear regression. Each of these approaches has 
strengths and weaknesses, and it is not appropriate on all occasions. For example, with some of 
the traditional regression approaches, model fit is a straightforward measure of accuracy. In 
contrast, MSE depends on the number of observations (Chung et al., 2022). 

One argument in the literature is that the sMAPE is the superior accuracy measure 
(Chung et al., 2022). One of the main reasons for this argument is that in times of variation of the 
scale of observations between series, a few series with larger values can dominate the 
comparison within the MAPE (Chatfield, 1988). Equal errors above the actual values and equal 
errors below the actual value will not create the same absolute percent error (APE) (Makridakis, 
1993). Equal values above lead to a greater APE (Armstrong & Collopy, 1992). Therefore, there 
are numerous examples of the sMAPE being used or recommended (Chung et al., 2022; 
Hyndman & Koehler, 2006; Makridakis & Hibon, 2000; Taieb et al., 2012; Williams & Miller, 
1999). 

In contrast, a separate line of argument in the literature points to errors with sMAPE 
(Goodwin & Lawton, 1999). For example, in some instances, a non-monotonic relationship can 
occur between sMAPE and absolute forecasting errors. Inconsistent performance in sMAPE 
estimators has been found depending on whether the forecasted value underestimated or 
overestimated the actual value (Tayman & Swanson, 1999). In addition, they found that 
differences between sMAPE and MAPE were related to the side of the over or underestimate. In 
addition, sMAPE tends towards high error values when the error is small (Mathai et al., 2016). 
Similar to sMAPE, there are numerous examples of MAPE being used or recommended within 
the literature (Callen et al., 1996; Halimawan & Sukarno, 2013; Prayudani et al., 2019; Singh, 
Hussain, & Bazaz, 2017; Vivas, Allende-Cid, & Salas, 2020). 

Therefore, the literature has not coalesced around one particular measurement tool for 
forecasting accuracy. This lack of uniformity harkens back to Mathews and Diamantopoulos’s 
(1994) argument that no one measure provides an unambiguous measurement of performance. 
Therefore, a measurement of accuracy must be selected and justified.  
 
 
Texas Sales Tax 
 
Similar to prior studies, the basis of our study will be at the state level, in part due to variations in 
sales tax laws between states in the United States. However, we are not following the prior 
precedent of using Illinois, Indiana, Utah, and Virginia. Texas was selected because of the large 
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number of cities that issue sales taxes and the relatively limited variation in sales tax rates. For 
our sample, we collected data on over 1,000 cities for 16 years. This gives us a substantial 
number of jurisdictions to assess forecast methods. Additionally, sales tax rates are relatively 
stable in Texas, both between and within cities. 

In Texas, counties and cities can impose a 1% sales tax, with the option to add another 
1% through various entities like economic development corporations, public transportation 
governments, and police and fire districts. The state has a maximum sales tax rate of 8.25%, with 
6.25% allocated to the state’s general fund (Texas Comptroller of Public Accounts, 2015). 
Registered businesses are required to collect sales taxes on behalf of the state comptroller’s 
office during normal operations and to submit sales tax revenue to the state on a monthly, 
quarterly, or annual basis, depending on the size of their organizations. Using only Texas, we 
ensure that institutional rules on collection, tax base, and other state administrative policies are 
uniform across the cross-sectional units. 
 
 
Forecasting Methodology and Comparisons 
 
To understand the most accurate forecasting approaches, monthly sales tax collection data for 
every city in Texas were collected between January 1991 and December 2017 using the Texas 
Comptroller website. Unfortunately, not all the monthly data were available for the entire time 
frame for every city in Texas. Only cities with complete time series were included in the 
analyses, resulting in 822 cities with complete monthly data, 976 cities with complete quarterly 
data, and 1,005 cities with complete yearly data. While rare, some cities in Texas changed their 
sales tax rates during the period under study. Cities that did not have a uniform sales tax 
throughout the period of study were time-series comparable. This ensured that the rate changes 
would not affect the forecasting accuracy. 

To compare forecasts, we ran each pre-processing step and forecasting model on each 
city using its monthly, quarterly, and yearly data. This approach resulted in a unique forecast for 
each city. Forecast accuracy was evaluated using the MAPE score on the latest 24 months, eight 
quarters, or four years of data. These city-level MAPE scores were then aggregated for every 
model-preprocessing (MP) combination, producing MAPE averages and standard deviations at 
the MP level. City-level forecasts three times the interquartile range were identified as outliers 
and removed before MP aggregation. 
 
 
Results 
 
To evaluate and compare MP forecasting performance, we have provided the average MAPE, 
standard deviation, performance ranking, the percentage difference from the best forming model 
MAPE called diminished performance (%), the minimum and maximum MAPE within each 
model, the total number of cities forecasted in each model, and the number of outlier cities 
removed. These metrics provide useful context on how models and pre-processing steps perform 
across the entire population of forecasted cities. To streamline the results, we only included the 
top 30 MP forecasts for the monthly and quarterly forecasts and every forecast that performed 
above the MAPE average for the yearly forecasts. Monthly MP forecasts are in Table 2,  
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Table 2. Monthly Sales Tax Forecast Accuracy 
 Average Standard 

Deviation 
Min Max Performance 

Ranking 
Diminished 

Performance 
Forecasts Outlier 

Forecasts 
(IHS) (Detrend) 
KKNN 1.000 0.452 0.276 2.346 1 -- 759 63 
XGBOOST 1.044 0.508 0.336 2.443 2 4.4% 756 66 
SNaïve* 1.128 1.037 0.117 8.293 5 12.8% 822 0 
Linear Trend 1.192 0.431 0.472 2.318 6 19.1% 747 75 
Mean* 1.381 0.777 0.476 6.782 15 38.1% 822 0 
Naïve* 1.644 1.502 0.462 22.468 21 64.4% 822 0 
Drift* 1.660 1.538 0.469 23.209 22 66.0% 822 0 
NNAR 2.763 1.902 0.286 8.890 39 176.2% 756 66 
(Log) (Detrend) 
KKNN 1.075 0.501 0.289 2.544 3 7.5% 764 58 
XGBOOST 1.081 0.518 0.275 2.571 4 8.1% 745 77 
SNaïve* 1.208 1.125 0.123 9.041 7 20.8% 822 0 
Linear Trend 1.273 0.473 0.501 2.509 11 27.3% 750 72 
Mean* 1.474 0.846 0.505 7.456 17 47.4% 822 0 
Naïve* 1.756 1.621 0.479 23.987 27 75.6% 822 0 
Drift* 1.773 1.659 0.487 24.779 28 77.2% 822 0 
NNAR 2.885 1.977 0.249 9.119 40 188.4% 749 73 
(IHS) 
DT ETS 1.213 0.752 0.203 3.456 8 21.3% 759 63 
ARIMA 1.226 0.678 0.257 3.286 9 22.6% 747 75 
SNaïve* 1.610 1.688 0.170 30.373 20 61.0% 822 0 
Linear Trend 1.821 0.896 0.434 4.321 31 82.1% 750 72 
Drift* 1.834 1.781 0.428 24.261 32 83.3% 822 0 
Naïve* 1.840 1.731 0.491 23.288 33 83.9% 822 0 
(IHS) (SA) 
KKNN 1.255 0.716 0.181 3.361 10 25.4% 760 62 
XGBOOST 1.466 0.665 0.302 3.374 16 46.5% 753 69 
SNaïve* 1.608 1.687 0.170 30.430 19 60.8% 822 0 
Naïve* 1.676 1.812 0.205 22.710 23 67.6% 822 0 
Linear Trend 1.753 1.093 0.185 4.898 26 75.3% 776 46 
Drift* 1.812 1.879 0.195 23.956 30 81.2% 822 0 
NNAR 2.986 2.130 0.288 10.274 41 198.5% 747 75 
(Log) 
DT ETS 1.307 0.820 0.216 3.912 12 30.6% 759 63 
ARIMA 1.313 0.738 0.267 3.557 13 31.2% 749 73 
SNaïve* 1.722 1.841 0.177 33.702 25 72.2% 822 0 
Linear Trend 1.954 0.979 0.451 4.707 36 95.3% 754 68 
Drift* 1.959 1.923 0.445 25.883 37 95.9% 822 0 
Naïve* 1.965 1.870 0.510 24.846 38 96.5% 822 0 
(Log) (SA) 
KKNN 1.337 0.771 0.189 3.607 14 33.7% 760 62 
XGBOOST 1.548 0.717 0.304 3.597 18 54.7% 754 68 
SNaïve* 1.721 1.841 0.177 33.773 24 72.0% 822 0 
Naïve* 1.793 1.956 0.215 24.566 29 79.3% 822 0 
Linear Trend 1.873 1.177 0.192 5.296 34 87.2% 777 45 
Drift* 1.938 2.027 0.205 25.913 35 93.8% 822 0 
*Denotes a benchmark model. 
Grey highlighted row = ranked 1-5 
Green highlighted row = ranked 6-10 
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Table 3. Quarterly Sales Tax Forecast Accuracy 
 Average Standard 

Deviation 
Min Max Performance 

Ranking 
Diminished 

Performance 
Forecasts Outlier 

Forecasts 
(IHS) (Detrend) 
Linear Trend 0.406 0.261 0.040 1.226 1 -- 893 83 
KKNN 0.474 0.312 0.027 1.472 3 16.5% 900 76 
Mean* 0.544 0.594 0.040 7.161 5 33.9% 976 0 
XGBOOST 0.607 0.206 0.223 1.190 7 49.3% 840 136 
SNaïve* 0.706 0.835 0.029 12.133 9 73.8% 976 0 
Naïve* 0.833 1.027 0.056 12.735 11 105.0% 976 0 
Drift* 0.852 1.055 0.058 13.141 12 109.5% 976 0 
NNAR 2.506 2.577 0.077 11.811 41 516.4% 893 83 
(Log) (Detrend) 
Linear Trend 0.431 0.279 0.042 1.314 2 6.1% 893 83 
KKNN 0.502 0.333 0.028 1.571 4 23.5% 899 77 
Mean* 0.580 0.637 0.041 7.605 6 42.6% 976 0 
XGBOOST 0.634 0.232 0.208 1.319 8 55.9% 847 129 
SNaïve* 0.753 0.897 0.030 12.953 10 85.2% 976 0 
Naïve* 0.887 1.101 0.059 13.689 14 118.3% 976 0 
Drift* 0.907 1.131 0.062 14.126 15 123.1% 976 0 
NNAR 2.518 2.595 0.071 11.947 42 519.4% 879 97 
(IHS) 
DT ETS 0.875 0.554 0.086 2.574 13 115.2% 367 36 
DT ETS 0.923 0.649 0.080 2.897 16 127.0% 540 33 
ARIMA 0.938 0.641 0.097 2.973 17 130.7% 902 74 
Naïve* 1.196 1.428 0.060 16.888 24 194.3% 976 0 
Drift* 1.225 1.466 0.096 16.863 26 201.4% 976 0 
SNaïve* 1.333 1.518 0.058 25.048 32 227.8% 976 0 
Linear Trend 1.536 1.125 0.077 4.981 38 277.9% 930 46 
(Log) 
DT ETS 0.943 0.609 0.090 2.846 18 131.9% 367 30 
DT ETS 0.975 0.691 0.085 3.015 19 140.0% 542 37 
ARIMA 0.998 0.690 0.101 3.184 21 145.5% 903 73 
Naïve* 1.274 1.534 0.062 18.449 28 213.3% 976 0 
Drift* 1.304 1.574 0.100 18.081 30 220.9% 976 0 
SNaïve* 1.419 1.633 0.061 27.341 35 249.0% 976 0 
Linear Trend 1.622 1.188 0.081 5.280 39 299.1% 928 48 
(IHS) (SA) 
KKNN 0.979 0.683 0.088 3.087 20 140.7% 906 70 
Naïve* 1.192 1.428 0.058 16.941 23 193.1% 976 0 
Drift* 1.221 1.458 0.050 16.536 25 200.4% 976 0 
SNaïve* 1.332 1.518 0.058 25.068 31 227.8% 976 0 
XGBOOST 1.411 0.668 0.174 3.136 33 247.1% 904 72 
Linear Trend 1.534 1.134 0.066 5.019 37 277.4% 931 45 
(Log) (SA) 
KKNN 1.044 0.737 0.092 3.352 22 156.9% 908 68 
Naïve* 1.269 1.534 0.061 18.511 27 212.2% 976 0 
Drift* 1.300 1.566 0.053 17.731 29 219.9% 976 0 
SNaïve* 1.418 1.634 0.061 27.366 34 248.9% 976 0 
XGBOOST 1.464 0.716 0.171 3.332 36 260.2% 907 69 
Linear Trend 1.624 1.202 0.069 5.286 40 299.5% 930 46 
*Denotes a benchmark model. 
Grey highlighted row = ranked 1-5 
Green highlighted row = ranked 6-10 
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Table 4. Annual Sales Tax Forecast Accuracy 

 Average Standard 
Deviation 

Min Max Performance 
Ranking 

Diminished 
Performance 

Forecasts Outlier 
Forecasts 

(IHS) 
Drift* 1.400 1.771 0.032 20.717 1 -- 1005 0 
ARIMA 1.437 0.951 0.060 4.336 2 2.6% 942 63 
Naïve* 1.447 1.609 0.048 17.739 3 3.4% 1005 0 
DT ETS 1.489 1.335 0.040 5.886 5 6.4% 939 63 
Linear Trend 1.511 1.145 0.045 5.286 6 8.0% 951 54 
NNAR 1.995 1.857 0.028 8.756 11 42.5% 902 103 
Mean* 3.627 2.920 0.053 19.969 13 159.1% 1005 0 
(Log) 
Drift* 1.480 1.888 0.033 22.278 4 5.8% 1005 0 
ARIMA 1.512 1.003 0.063 4.574 7 8.0% 941 64 
Naïve* 1.529 1.714 0.051 19.076 8 9.2% 1005 0 
DT ETS 1.570 1.413 0.041 6.208 9 12.2% 941 63 
Linear Trend 1.581 1.192 0.047 5.559 10 13.0% 948 57 
NNAR 2.130 2.000 0.038 9.143 12 52.2% 904 101 
Mean* 3.822 3.083 0.055 21.167 14 173.1% 1005 0 
*Denotes a benchmark model 
Grey highlighted row = ranked 1-5 
 
 
quarterly forecasts are in Table 3, and annual forecasts are in Table 4. The complete results are in 
the appendix, which is available on the journal’s website. 

To identify the most accurate MP forecasts using both the average MAPE and standard 
deviation MAPE, k-means exploratory cluster analysis was performed. K-means exploratory 
cluster analysis groups similar observations together into groups based on multiple variables, 
which will give us an approximation of both the most accurate (measured using average MAPE) 
and the most consistent (measured using standard deviation of MAPE) models and pre-
processing steps. As the goal of forecasting may be accuracy or consistency, this provides 
interesting findings about the differences between the two based on the approach. The optimal 
number of clusters was determined using a visual inspection of the explanatory power of 
different numbers of clusters called the elbow method (Humaira & Rasyidah, 2020), and it 
indicated that eight clusters from the monthly forecasts, four clusters from the quarterly, and four 
clusters from the yearly forecasts were optimal. The most accurate MP forecasts from the cluster 
analyses are in Figure 1. 

The performance of each MP average MAPE is compared to the most accurate MP 
forecast and reported in the column Diminished Performance (%). For the monthly forecasts, the 
most accurate model had an average MAPE of 1 using KKNN with IHS detrended data. The 
average diminished performance of the top ten MP forecasts was 15.78%, and for all models 
presented in Table 1, it was 44.97%. For the quarterly forecasts, the most accurate model was 
Linear Trend with IHS detrended data that had an average MAPE of 0.406. The average 
diminished performance of the top 10 quarterly MP forecasts was 42.98%, and for all models 
presented in Table 2, it was 123.66%. For the yearly forecasts, the most accurate model was the 
Drift benchmark model with IHS data with an average MAPE of 1.400. The average diminished 
performance of the top five MP forecasts was 4.54%, and for all models presented in Table 3, it  

 



https://doi.org/10.59469/pfj.2024.8  Public Finance Journal | Vol. 1 | 2024 | 39 

Figure 1. Most Accurate Yearly Forecasts 

 
 

 
was 38.1%. Interestingly, the most accurate forecasts from each period used IHS pre-processing 
steps, while a different model resulted in more accurate forecasts for each period. This suggests 
that stable forecasting improvements can be made across different time periods with the 
implementation of similar pre-processing steps, but not through similar modeling approaches. 

Table 5 presents the results of averaged percent diminished MP performance across 
different models but holds pre-processing steps constant. Table 6 compares the average  
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Table 5. Average Percentage Diminished Performance with Constant Preprocessing 
 All Forecasts   No Outlying Forecasts 
 Average 

Diminished 
Performance 

Average 
Performance 

Ranking 

Total 
Models 

Outlier 
Models 

Average 
Diminished 

Performance 

Average 
Performance 

Ranking 
Monthly 
(IHS) Detrend) 47.6% 1 8 0 47.6% 1 
(Log) Detrend) 56.5% 2 8 0 56.5% 2 
(IHS) 96.1% 3 7 0 96.1% 3 
(IHS) (SA) 108.4% 4 8 0 108.4% 4 
(Log) 109.6% 5 7 0 109.6% 5 
(Log) (SA) 123.3% 6 8 0 123.3% 6 
(Detrend) 1,672.0% 7 8 5 1,094.5% 7 
No Transformation 1,955.2% 8 7 4 1,454.1% 9 
(SA) 2,097.0% 9 8 5 1,406.9% 8 
Quarterly 
(IHS) Detrend) 113.1% 1 8 0 113.1% 1 
(Log) Detrend) 121.8% 2 8 0 121.8% 2 
(IHS) 266.9% 3 8 0 266.9% 3 
(Log) 289.9% 4 8 0 289.9% 4 
(IHS) (SA) 353.8% 5 8 0 353.8% 5 
(Log) (SA) 386.1% 6 8 0 386.1% 6 
(Detrend) 2,452.2% 7 8 1 1,798.5% 7 
No Transformation 3,862.2% 8 8 4 2,894.3% 8 
(SA) 4,721.9% 9 8 5 3,062.8% 9 
Yearly 
(IHS) 31.7% 1 7 0 31.7% 1 
(Log) 39.1% 2 7 0 39.1% 2 
No Transformation 1,440.5% 3 7 0 1,440.5% 3 

 
 
diminishing performance of different pre-processing steps but holds the model constant. Table 7 
provides the range of improvement from pre-processing (Table 5), and modeling (Table 6). 
 
 
Discussions 
 
The purpose of this study is to identify the most accurate sales tax forecasting method, and the 
analysis suggests three overarching lessons: pre-processing makes the most significant difference 
in forecasting accuracy, understanding the unique characteristics of time series data improves 
forecasting performance, and modeling choices matter, but less than the prior literature and 
practice suggested. 
 
Processing Matters 
 
The most significant improvement in our analysis occurred when data were transformed using 
the IHS method, followed closely by logging–both of which were data-normalizing pre-
processing steps. This finding is consistent across all three periods. Most studies recommend 
some form of pre-processing that normalizes the time series data, including previous studies on 
sales tax forecasting (Williams & Calabrese, 2016). What this study suggests is that regardless of  
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Table 6. Average Percentage Diminished Performance with Constant Models 
 All Forecasts   No Outlying Forecasts 
 Average 

Diminished 
Performance 

Average 
Performance 

Ranking 

Total 
Preprocessing 

Outlier 
Models 

Average 
Diminished 

Performance 

Average 
Performance 

Ranking 
Monthly 
XGBOOST 395.8% 1 6 0 395.8% 6 
KKNN 396.5% 2 6 0 396.5% 7 
ARIMA 439.2% 3 3 0 439.2% 8 
DT ETS 461.0% 4 3 0 461.0% 9 
Linear Trend 565.0% 5 9 0 565.0% 10 
SNaïve* 613.4% 6 9 3 49.9% 1 
Naïve* 696.5% 7 9 3 77.9% 2 
Drift* 714.6% 8 9 3 82.9% 3 
Mean* 1,090.9% 9 9 3 233.3% 5 
NNAR 1,231.1% 10 6 2 197.6% 4 
Quarterly 
KKNN 729.1% 1 6 0 729.1% 5 
XGBOOST 780.6% 2 6 0 780.6% 7 
DT ETS 935.6% 3 6 0 935.6% 8 
ARIMA 955.1% 4 3 0 955.1% 9 
Linear Trend 1,119.9% 5 9 0 1,119.9% 10 
Naïve* 1,161.6% 6 9 2 502.2% 2 
Drift* 1,184.4% 7 9 2 515.1% 3 
SNaïve* 1,250.5% 8 9 2 447.3% 1 
Mean* 2,406.8% 9 9 2 749.6% 6 
NNAR 3,149.4% 10 6 2 623.1% 4 
Yearly 
ARIMA 383.5% 1 3 0 383.5% 1 
Linear Trend 398.4% 2 3 0 398.4% 2 
Drift* 416.0% 3 3 0 416.0% 3 
Naïve* 422.2% 4 3 0 422.2% 4 
DT ETS 426.9% 5 3 0 426.9% 5 
NNAR 586.8% 6 3 0 586.8% 6 
Mean* 892.3% 7 3 0 892.3% 7 
*Denotes a benchmark model. 

 
 

the period used, the biggest improvement in forecast performance comes from IHS 
transformation. 

Two exciting patterns emerged in the comparisons of pre-processing steps. The first 
pattern was that removing outlying average forecasts did not drastically alter the rank order of 
model performance. In the monthly and quarterly forecasts, the first seven of nine pre-processing 
steps stayed in the same rank order regardless of whether outlying model forecasts were included 
or removed. This suggests that improvements to individual city forecasts from data pre-
processing are likely to improve forecasts even in cities that are relative forecasting outliers. 

The second pattern was the lower average diminishing performance of the top six pre-
processing steps in the monthly and quarterly data, as seen in Table 6. The low average 
diminished performance associated with data pre-processing is stark compared to the much 
larger average diminished performance across models (i.e., Table 7). This finding suggests that 
variations within a pre-processing step and across models are smaller than vice versa. Making 
sure that data are transformed results in better and more stable forecast accuracy. 
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Table 7. Range of Improvement from Preprocessing 
 All Forecasts No Outlying Forecasts 
 Model Diminished 

Performance 
Range 

Preprocessing 
Diminished 

Performance Range 

Model Diminished 
Performance 

Range 

Preprocessing 
Diminished 

Performance Range 
Monthly 835.3% 2,049.3% 515.0% 1,406.5% 
Quarterly 2,420.3% 4,608.8% 672.6% 2,949.7% 
Yearly 508.8% 1,408.8% 508.8% 1,408.8% 

 
 

Table 8. Inflation Adjustment Performance Comparison 
     % of Forecasts Better/Worse 

Adjusting for Inflation 
 Average Standard 

Deviation 
Min Max Better Worse 

Monthly 2.4% 3.2% -2.7% 10.0% 85.4% 14.6% 
Quarterly 1.4% 4.6% -22.2% 12.5% 92.9% 7.1% 
Yearly 31.3% 67.7% -9.8% 193.6% 57.1% 42.9% 

 
 
A standard pre-processing step in time series data is adjusting for inflation, which is 

important for integrating1 time series data. Table 8 shows the average improvement in accuracy 
for adjusting a forecast for inflation. The average improvement from inflation adjustment is 
2.4%, 1.4%, and 31.3% for monthly, quarterly, and yearly periods, respectively. While there is 
forecasting improvement in all three periods, the improvement in average forecasting accuracy is 
considerably smaller than improvements gained by IHS or logging the time series data. Another 
interesting development is that adjusting for inflation did not always improve forecasting 
accuracy. Adjusting for inflation led to reductions in model/pre-processing accuracy of 14.6%, 
7.1%, and 42.9% for monthly, quarterly, and yearly data, respectively. Adjusting for inflation is 
an important part of forecasting financial data, but it does not always translate to improved 
forecasting accuracy. 
 
Understanding Time-Series Data Matters 
 
The results highlight the importance of understanding the nature of time series data and using 
that knowledge when forecasting. In our analyses, detrending and seasonally adjusting data 
improved forecasting accuracy. The top seven performing models in the monthly data and all top 
10 models in the quarterly data were detrended time series. Adjusting for seasonality did not 
result in the same performance improvements, but it did result in relative improvements in 
accuracy over a non-seasonally adjusted time series. Further, accounting for seasonality and 
trends resulted in improvements in machine learning models, which were the best-performing 
models in the monthly and quarterly forecasts. 

Finally, another crucial finding was that the time interval affects the effectiveness of 
models. The best-performing models change across time intervals, and certain pre-processing 
steps make a bigger difference for certain time periods. For example, seasonally adjusting data 
does not apply to annual data, but adjusting for inflation made the biggest positive difference to 

 
1 Integration is a statistical term that refers broadly to “detrending” time series data and making it more statistically 
“stable.” 
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yearly data by a large percentage. What time interval is best? The answer depends on what data 
is most thorough and accurately reflects when the sales tax was collected (Overton, Nukpezah, & 
Ismayilov, 2017). There were significant performance differences between the three periods, 
suggesting that attention should be paid to the frequency of time series data used for sales tax 
forecasts, with a preference for the intervals at which the sales tax was collected. 
 
Modeling Matters, But Not as Much as Everything Else 
 
Table 7 shows that forecasting accuracy improved most from pre-processing decisions rather 
than modeling decisions. In addition, Table 7 illustrates how the average diminished 
performance based on modeling decisions was much larger than that of the pre-processing steps. 
Pre-processing steps led to considerably larger improvements in forecasting accuracy than 
modeling decisions. Therefore, the focus of both public finance professionals and researchers 
should be on conducting the appropriate pre-processing steps. 

One additional pattern that emerged is that the rank of average model forecasting 
accuracy changed drastically once outlying average forecasts were removed. Before outlier 
removal, XGBOOST, KNN, ARIMA, DT ETS, and Linear Trend models performed best. 
However, once outliers were removed, the average performance of all four benchmark models 
outperformed that of the machine learning and traditional methods. However, it should be noted 
that the XGBOOST, KNN, ARIMA, DT ETS, and Linear Trend models did not produce any 
model-level MAPE outliers, suggesting that their accuracy is less prone to variations in pre-
processing. Therefore, one should carefully weigh average forecasting performance against the 
likelihood of generating forecasting outliers when evaluating forecast-generating methods. 
 
 
Conclusion 
 
Returning to the question we started with, what is the best technique for forecasting sales tax 
revenue, the answer is not as simple, as traditional methods can outperform machine learning 
techniques or vice versa. In fact, the existing literature tackling this problem might have been 
asking the wrong question in its entirety. Scholars such as Chung et al. (2022) and Buxton et al. 
(2019) provided direct comparisons of machine learning techniques with traditional ones 
regarding forecasting accuracy. They should consider additional analysis to determine whether 
their findings hold in the case of different pre-processing steps. In our attempt to answer the 
question, findings held that perhaps the question should have been: What pre-processing steps 
did you take before engaging in forecasting? In many ways, we provide strong evidence that the 
arguments by Gorr (1994) and Nelson (1996) are fundamentally flawed while supporting the 
findings of Zhang and Qi (2005) that neural networks cannot fully capture seasonal or trend 
variation and pre-processing of time series data matters. 

However, not all pre-processing steps are as important as the previous literature 
suggested (see Ammons, 1991, 2001; Armstrong, 2001; Williams & Kavanagh, 2016). Adjusting 
for inflation is an important part of forecasting, but it does not always translate into improved 
forecasting accuracy. Therefore, researchers and practitioners should exercise caution in 
adjusting for inflation. In contrast, IHS, or logging the time series data, led to larger gains in 
overall forecast accuracy. 
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Understanding the nature of time series data is essential for individuals engaging in 
revenue forecasting. Detrending and seasonally adjusting data should be common practice for 
those working with monthly or quarterly data. In addition, the interval affects the effectiveness of 
models, and individuals should attempt to select what accurately reflects when the sales tax was 
collected. 

So, what is the best technique for forecasting sales tax revenue? Should local 
governmental officials study machine learning techniques to improve their forecasting accuracy? 
Well, part of the answer to the question relies on outliers. XGBOOST, KNN, ARIMA, DT ETS, 
and Linear Trend models did not produce any model-level MAPE outliers, suggesting that their 
accuracy is less prone to variations in pre-processing. However, before outlier removal, the 
XGBOOST, KNN, ARIMA, DT ETS, and Linear Trend models performed best. Which 
individual approach performed best–machine learning or traditional models–depended on the 
interval of time. Therefore, a rush to machine learning techniques may not be necessary for 
municipalities if they collect sales taxes quarterly or yearly. 

Instead of focusing on the technique, revenue forecasting practitioners should be focusing 
on the pre-processing steps they are using on their data. The pre-processing provided much better 
forecasting accuracy than simply a model selection. Therefore, future researchers should shift the 
focus from machine learning or traditional models towards an approach that takes a holistic 
approach and includes various pre-processing steps. Testing the findings from this research on 
data from a different state with different rules on collection, tax base, and other state 
administrative policies would be a logical next step toward understanding and expanding the 
knowledge base of revenue forecasting. Regardless, the focus within the literature and in practice 
should shift from what forecasting technique performs best to what pre-processing steps in 
combination with a forecasting technique perform best. Simply focusing on technique ignores 
the larger concern in achieving greater accuracy–pre-processing steps. 
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